It’s back: UQ researchers track re-emergence of scarlet fever


petri dish

An international study led by University of Queensland researchers has tracked the re-emergence of scarlet fever, a childhood disease which had largely disappeared over the past 100 years.

Researchers at UQ’s Australian Infectious Diseases Centre have used genome sequencing techniques to investigate a rise in the incidence of scarlet fever-causing bacteria and an increasing resistance to antibiotics.

UQ School of Chemistry and Molecular Biosciences researcher Professor Mark Walker says the disease had re-emerged in parts of Asia and the United Kingdom.

“We have not yet had an outbreak in Australia, but over the past five years there have been more than 5000 cases in Hong Kong (a 10-fold increase) and more than 100,000 cases in China,” says Prof Walker.

“And an outbreak in the UK has resulted in 12,000 cases since last year.”

Scarlet fever, which mainly affects children under 10, is spread by Group A Streptococcus (strep throat bacteria) known as GAS.

Symptoms include a red rash on the skin, sore throat, fever, headache and nausea. Serious illness can be treated with antibiotics.

UQ School of Chemistry and Molecular Biosciences researcher Dr Nouri Ben Zakour says the research results are “deeply concerning”.

“We now have a situation which may change the nature of the disease and make it resistant to broad-spectrum treatments normally prescribed for respiratory tract infections, such as in scarlet fever,” she says.

She says penicillin continues to provide an excellent treatment for patients who are not allergic to it.

Dr Ben Zakour says the rise in scarlet fever could pre-empt a future rise in rheumatic heart disease, which causes permanent heart damage.

“With this heightened awareness, we can now swiftly identify scarlet fever-associated bacteria and antibiotic resistance elements, and track the spread of scarlet fever-causing GAS strains,” she says.

Dr Ben Zakour says the evolutionary forces driving the outbreaks are unknown, but bacterial causes, the immune status of people contracting scarlet fever, and environmental factors such as temperature and rainfall could all play a significant role.

“Only a continued study of the patterns, causes and effects of health and diseases will determine the full impact these recent gene changes will have on the global GAS disease burden,” she says.

The research, published in Scientific Reports, was conducted by Associate Professor Scott Beatson’s microbial genomics group at UQ, with collaborators at the Wellcome Trust Sanger Institute, UK, and in China at the Chinese Center for Disease Control and Prevention, the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, and the Beijing Institute of Microbiology and Epidemiology.

The work was supported by the Wellcome Trust, the National Health and Medical Research Council of Australia, the Australian Research Council, and the Research Fund for the Control of Infectious Diseases Commissioned Grant of the Hong Kong Government.

Previous Apotex named Strategic Partner of the Year at Blooms awards
Next Sliding scale insulin dosing leads to more missed doses

NOTICE: It can sometimes take awhile for comment submissions to go through, please be patient.

No Comment

Leave a reply